S-glutathionylation activates STIM1 and alters mitochondrial homeostasis
نویسندگان
چکیده
Oxidant stress influences many cellular processes, including cell growth, differentiation, and cell death. A well-recognized link between these processes and oxidant stress is via alterations in Ca(2+) signaling. However, precisely how oxidants influence Ca(2+) signaling remains unclear. Oxidant stress led to a phenotypic shift in Ca(2+) mobilization from an oscillatory to a sustained elevated pattern via calcium release-activated calcium (CRAC)-mediated capacitive Ca(2+) entry, and stromal interaction molecule 1 (STIM1)- and Orai1-deficient cells are resistant to oxidant stress. Functionally, oxidant-induced Ca(2+) entry alters mitochondrial Ca(2+) handling and bioenergetics and triggers cell death. STIM1 is S-glutathionylated at cysteine 56 in response to oxidant stress and evokes constitutive Ca(2+) entry independent of intracellular Ca(2+) stores. These experiments reveal that cysteine 56 is a sensor for oxidant-dependent activation of STIM1 and demonstrate a molecular link between oxidant stress and Ca(2+) signaling via the CRAC channel.
منابع مشابه
Diazeniumdiolate Mediated Nitrosative Stress Alters Nitric Oxide Homeostasis through Intracellular Calcium and S-Glutathionylation of Nitric Oxide Synthetase
BACKGROUND PABA/NO is a diazeniumdiolate that acts as a direct nitrogen monoxide (NO) donor and is in development as an anticancer drug. Its mechanism of action and effect on cells is not yet fully understood. METHODOLOGY/PRINCIPAL FINDINGS We used HPLC and mass spectrometry to identify a primary nitroaromatic glutathione metabolite of PABA/NO and used fluorescent assays to characterize drug ...
متن کاملStromal interaction molecule 1 is essential for normal cardiac homeostasis through modulation of ER and mitochondrial function.
The endoplasmic reticulum (ER) Ca(2+) sensor stromal interaction molecule 1 (STIM1) has been implicated as a key mediator of store-dependent and store-independent Ca(2+) entry pathways and maintenance of ER structure. STIM1 is present in embryonic, neonatal, and adult cardiomyocytes and has been strongly implicated in hypertrophic signaling; however, the physiological role of STIM1 in the adult...
متن کاملSTIM1 SAM domain mutations alter STIM:ORAI stoichiometry and selectivity of ORAI1
Background: Calcium influx (I CRAC) is important for proper cell function. Results: A novel STIM1 mutant increases I CRAC, Ca 2+-dependently destabilizes Orai1 and alters clustering. A new mathematical model explains the phenotype. Conclusion: The molecular kinetics of STIM1 and Orai1 are major determinants of I CRAC. Significance: The diffusion trap model and alteration of Orai1 stability prov...
متن کاملProtein Glutathionylation in Cardiovascular Diseases
The perturbation of thiol-disulfide homeostasis is an important consequence of many diseases, with redox signals implicated in several physio-pathological processes. A prevalent form of cysteine modification is the reversible formation of protein mixed disulfides with glutathione (S-glutathionylation). The abundance of glutathione in cells and the ready conversion of sulfenic acids to S-glutath...
متن کاملProtein S-glutathionylation lowers superoxide/hydrogen peroxide release from skeletal muscle mitochondria through modification of complex I and inhibition of pyruvate uptake
Protein S-glutathionylation is a reversible redox modification that regulates mitochondrial metabolism and reactive oxygen species (ROS) production in liver and cardiac tissue. However, whether or not it controls ROS release from skeletal muscle mitochondria has not been explored. In the present study, we examined if chemically-induced protein S-glutathionylation could alter superoxide (O2●-)/h...
متن کامل